Drew Landing Public Boardwalk

Town of Dunstable, MA - Conservation Commission December 13, 2021

Introduction

• Goals:

- Show Examples of Boardwalk Construction
- Provide Feedback / Share Your Vision

• Outline:

- Company Overview and Project Team
- Project Overview / Work Done to Date
- Design Constraints and Wants
- Boardwalk Examples
- Notes on Pressure Treated Timber
- Project Schedule
- Questions, Comments, Feedback

Project Team

- Joe Ripley, PE Project Manager
 - 10 years experience in structural engineering including historic covered bridges, pedestrian bridges, and recreation trails.
- Joanne Theriault, CWS Environmental Scientist
 - 16 years experience in environmental permitting, wildlife ecology, and wetland science.
- Heidi Marshall, PE Senior Municipal Engineer and Quality Control
 - 35 years experience in municipal and structural engineering including trails, youth camps, sidewalks, roadways, and municipal infrastructure.

Project Overview / Work Done to Date

- Hoyle Tanner hired by Town in 2021 to act as Town Engineer.
- Assigned this task to determine a feasible boardwalk and assist with Mass Trails Grant Application.
- Met with Alan to layout path and boardwalk.
- Proceeding with Feasibility Study.



Boardwalk Starting Point from Drew Landing

Pine Trees to be Incorporated into Path Design

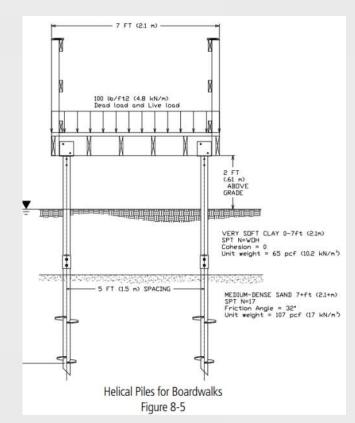
Project Overview / Work Done to Date (Cont.)

- 110 LF Path
- 260 LF Boardwalk

Design Constraints and Wants

- Must be Accessible. Designed to Meet US Forest Service FSTAG.
 - 5' Minimum Trail and Boardwalk Width.
 - ¹/₂" Max Gap Between Boards.
 - Proper Slopes and Grades.
- Must Carry 90 PSF Pedestrian Load.
- Must Have Rail if > 30" Drop.
- Must Have 20' Offset From Property Line.
- Want Durable and Easy to Maintain.
- Want Elevated Above Wetland.
- Want Limited Environmental Impact.

Boardwalk Examples - Foundation


- Borings / Subsurface Exploration Not Part of Our Scope.
- Utilize Borings from Main Street Bridge.
 - Medium Dense Sand Underlaying Organic Silt Layer at Channel Bed.
 - Deep Ledge.

	129 KRIEGER LANE, GLASTONBURY, CT 04033 Sheet 1 of						NE, GLASTONBURY, CT 06033 Sheet 1 of 1	68-2
City/Town: DUNSTABLE Bridge Number D-13-001					ber D-13-001	í	Project File Number 606302 Contract Number	56895
London MAIN STREET OVER SALAKON BROOK						Date & Time Started 03/02/11 AT 100 P.M.	and Hours	
Graundw	ater Depth (Feet)	310" (W 034	-	MACENT		Date & Time Completed 0307/11 AT 615 P M	11.75
Coordina	ies (Feel) N 30	2159.39		E 65	7969.78	viller's Name L	AKE ST.JOHN Helper's Name ORRIN CO	Æ
Ground E	Sevation (Fext)	158.16		in.	pector's Name	KUCK CHIANG	inspector's Company: MASSDOT Detrict 3	
Sample Depth Range		Bi	Blow Counts Per 6 Inches			Recovery	5.40 miles	Strata
Number	(Feel)	Con	g Tim	es Mir	utas Per Fool	(inches)	Field Description	Change
S1	1'3	35	30	16	11	18"	4" Asphall 4" Gravel Base Most Dense Brown FINE to COARSE SAND.	
52	5-7	6	3	2	4	6	Some Fine to Coarse Gravel, Some Inorganic Sit Most Medium Stiff Brown ORGANIC SILT	
							Moist Medium Stiff Brown OHGANIC SILT	1
\$3	10-12	8	12	10	"	22	Wet Medium Dense Gray FINE to COARSE SAND, Some Fine to Coame Gravel, Trace Inorganic Sit	
54	15-17	4	6	8	8	12	Wet Medium Dense Gray FINE SAND	
55	20-22	5	6	7	9	14"		
56	25-27	6	8	10	12	16"		
57	30-32	5	7	12	17	15'		
58	35-37	6	,	6	•	14"	Wei Medium Dense Brown FINE to COARSE SAND, Some Fine to Coarse Gravel, Trace	3
59	40'-4Z	40	80	75	89	22	Inorganic Sill, Running Sand at 407	
S10	42-44"	7	9	10	13	7		
S11	45-47	6	5	5	5	24'	45 Wet Medium Dense Gray FINE SAND, Some	

Boardwalk Examples - Foundation

- Helical Piles Recommended
 - Installed with Small Equipment.
 - No Wetland Excavation.
 - Potential for "Top Down" Construction.
- Timber Piles Not Recommended
 - Lower Reliability / Harder to Install at This Site.
 - Pressure Treated Elements in the Water.
- Concrete or Steel Footings -Not Recommended
 - Greater Environmental Impact.
 - More Excavation as Compared to Piles.
 - May Not Be Suitable for Proposed Loads.

Boardwalk Examples - Framing

- Pressure Treated Timber
 - Natural Timber not Considered Due to Low Service Life (Rot).
 - Can Utilize Glue-Laminated Beams to Increase Spans and Reduce Piles.
- Galvanized Steel (Modular Construction)
 - Designed and Detailed by a Specialty Contractor.

Pressure Treated Timber (USDA "Innovative Foundations for Boardwalks and Viewing Platforms")

Modular System – Southwest Park, Nashua, NH (Courtesy of Modular Trail Structures) Trusted Experts | Innovative Results

Boardwalk Examples - Framing

Framing Option	Advantages	Disadvantages
Pressure Treated Timber	Lower material cost.More "customizable".	 Potential for increased pressure treating chemicals under bridge. More temporary impact for construction. Longer construction duration.
Galvanized Steel (Modular Construction)	 Longer service life. Top-down construction. Faster construction. Less environment impact. 	Higher material cost.Requires 8' width.

Boardwalk Examples - Framing

Modular "Top Down" Construction (Courtesy of Helical Drilling)

Modular Boardwalk Framing (Courtesy of Helical Drilling)

Boardwalk Examples - Decking

- Composite Decking (HDPE or Trex Deck)
- Pressure Treated
 - Natural Timber not considered due to low service life (rot)

HDPE Deck (Courtesy of Helical Drilling)

Pressure Treated Deck Southwest Park, Nashua, NH (2015 Construction)

Boardwalk Examples - Decking

Framing Option	Advantages	Disadvantages
Pressure Treated Timber	Lower Cost.Readily available for replacements.	 Potential for increased chemicals under bridge.
Composite	Longer service life.	 Higher Cost (50% +/- more) Some concern with slipperiness and mold / mildew growth.

Pressure Treated Timber

- Numerous industry and government studies on environmental impact of pressure treated timber.
 - Measurable increases in pressure treated chemicals below boardwalk.
 - "no taxa were excluded or significantly reduced in number by any preservative treatment".
 - These included pressure treated piles. Our recommended piles are galvanized steel.
- All pressure treated timber is proposed to be treated with Micronized Copper Azole (MCA).
 - MCA is registered by the EPA for above-ground, ground contact, and freshwater contact.

Project Schedule

- Feasibility Study Phase Now.
- Mass Trails Grant due February 1, 2022.
- Start Design July 1, 2022.
- Apply for Mass Trails Construction (or Other Grant) Winter 2022/2023.
- Construction Summer 2023.

Thank You!

Questions / Feedback / Comments?

Joe Ripley, PE Office: 603-460-5211 Email: Jripley@hoyletanner.com